Golgi-to-late endosome trafficking of the yeast pheromone processing enzyme Ste13p is regulated by a phosphorylation site in its cytosolic domain.

نویسندگان

  • Holly D Johnston
  • Christopher Foote
  • Andrea Santeford
  • Steven F Nothwehr
چکیده

This study addressed whether phosphorylation regulates trafficking of yeast membrane proteins that cycle between the trans-Golgi network (TGN) and endosomal system. The TGN membrane proteins A-ALP, a model protein containing the Ste13p cytosolic domain fused to alkaline phosphatase (ALP), and Kex2p were found to be phosphorylated in vivo. Mutation of the S13 residue on the cytosolic domain of A-ALP to Ala was found to block trafficking to the prevacuolar compartment (PVC), whereas a S13D mutation generated to mimic phosphorylation accelerated trafficking into the PVC. The S13 residue was shown by mass spectrometry to be phosphorylated. The rate of endoplasmic reticulum-to-Golgi transport of newly synthesized A(S13A)-ALP was indistinguishable from wild-type, indicating that the lack of transport of A(S13A)-ALP to the PVC was instead due to differences in Golgi/endosomal trafficking. The A(S13A)-ALP protein exhibited a TGN-like localization similar to that of wild-type A-ALP. Similarly, the S13A mutation in endogenous Ste13p did not reduce the extent of or longevity of its localization to the TGN as shown by alpha-factor processing assays. These results indicate that S13 phosphorylation is required for TGN-to-PVC trafficking of A-ALP and imply that phosphorylation of S13 may regulate recognition of A-ALP by vesicular trafficking machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation

Human Golgi-localized, γ-ear-containing, ADP-ribosylation factor-binding proteins (Ggas) bind directly to acidic dileucine sorting motifs in the cytosolic tails (C-tails) of intracellular receptors. Despite evidence for a role in recruiting ubiquitinated cargo, it remains unclear whether yeast Ggas also function by binding peptide-sorting signals directly. Two-hybrid analysis shows that the Gga...

متن کامل

The clathrin adaptor complex 1 directly binds to a sorting signal in Ste13p to reduce the rate of its trafficking to the late endosome of yeast

Yeast trans-Golgi network (TGN) membrane proteins maintain steady-state localization by constantly cycling to and from endosomes. In this study, we examined the trafficking itinerary and molecular requirements for delivery of a model TGN protein A(F-->A)-alkaline phosphatase (ALP) to the prevacuolar/endosomal compartment (PVC). A(F-->A)-ALP was found to reach the PVC via early endosomes (EEs) w...

متن کامل

Btn2, a Hook1 ortholog and potential Batten disease-related protein, mediates late endosome-Golgi protein sorting in yeast.

BTN2 gene expression in the yeast Saccharomyces cerevisiae is up-regulated in response to the deletion of BTN1, which encodes the ortholog of a human Batten disease protein. We isolated Btn2 as a Snc1 v-SNARE binding protein using the two-hybrid assay and examined its role in intracellular protein trafficking. We show that Btn2 is an ortholog of the Drosophila and mammalian Hook1 proteins that ...

متن کامل

Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B).

The Wilson protein (ATP7B) is a copper-translocating P-type ATPase that mediates the excretion of excess copper from hepatocytes into bile. Excess copper causes the protein to traffic from the TGN (trans-Golgi network) to subapical vesicles. Using site-directed mutagenesis, mutations known or predicted to abrogate catalytic activity (copper translocation) were introduced into ATP7B and the effe...

متن کامل

[Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae].

Intracellular membrane trafficking between membranous compartments is essential for organelle biogenesis, structure, and identity. Rab/Ypt GTPases are well-characterized regulators of intracellular membrane trafficking, functioning as molecular switches that alternate between GTP- and GDP-bound forms. In Saccharomyces cerevisiae, 11 Rab/Ypt GTPases have been identified and their functions are k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2005